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Liquid-vapor phase behavior of a symmetrical binary fluid mixture
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Using Monte Carlo simulation and mean-field calculations, we study the liquid-vapor phase diagram of a
square-well binary fluid mixture as a function of a parameterd measuring the relative strength of interactions
between particles of dissimilar and similar species. The results reveal a rich variety of liquid-vapor coexistence
behaviors asd is tuned. Specifically, we uncover critical end point behavior, a triple point involving a vapor
and two liquids of different density, and tricritical behavior. For a certain range ofd, the mean-field calcula-
tions also predict a ‘‘hidden’’~metastable! liquid-vapor binodal.@S1063-651X~98!06308-9#

PACS number~s!: 64.70.Fx, 64.60.Fr, 05.70.Jk
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I. INTRODUCTION

One of the principal deficiencies in our understanding
liquid mixtures is the nature of the link between the micr
scopic description of the system and its macroscopic ph
behavior. For simple single-component fluids, the phase
gram topology is relatively insensitive to the microscop
properties of the molecules and exhibits~even in systems
with strong anisotropies or long-range interactions! a liquid-
vapor first-order line terminating at a critical point. In co
trast, in binary mixtures, the interplay between the const
ent components leads to a wealth of intriguing pha
behaviors@1,2# depending on the relative sizes of the mo
ecules and the strengths of their interactions.

Although the various possible phase diagram topolog
have been placed into a number of categories@1#, it is not
well understood~even at the mean-field level! precisely
which microscopic features are responsible for yielding
given topology. Also unclear is the extent to which critic
fluctuations affect the structure of the phase diagram,
whether the neglect of correlations in many analytical th
ries yields qualitatively~as well as quantitatively! incorrect
phase diagrams. The task of accurately and reliably deriv
the full phase behavior of a fluid mixture from the know
edge of its microscopic interactions therefore remains a g
challenge.

Evidently, an accurate description of the phase beha
of a simple binary fluid model would provide a useful benc
mark against which current and future liquid-state theor
could be tested. In the present work, we furnish such a
scription by means of Monte Carlo simulations of a simp
continuum model, the results of which we compare w
mean-field calculations. For reasons of computational tra
bility, we consider asymmetricalbinary fluid model, i.e., one
in which the two pure componentsA andB are identical and
only the interactions between particles of dissimilar spec
differ. Notwithstanding its simplicity, however, the mod
PRE 581063-651X/98/58~2!/2201~12!/$15.00
f
-
se
a-

-
e

s

a
l
.,
-

g

at

or
-
s
e-

a-

s

turns out to reveal a rich variety of interesting phase beh
ior.

II. BACKGROUND

The phase diagram of a symmetrical binary fluid mixtu
is spanned by three thermodynamic fields (T,m,h), whereT
is the temperature,m is the overall chemical potential cou
pling to the total density, andh is an ordering field coupling
to the relative concentrations of the two fluid componen
which we assume are allowed to fluctuate. In this work
shall restrict our attention to the phase behavior in the sy
metry planeh50, i.e., we stipulate that on average the nu
bers ofA and B particles are equal. Additionally we sha
assume that similar species interactions are energetic
more favorable than dissimilar species interactions. This
ter condition provides for a consolute point~critical demix-
ing transition! at some finite temperatureTc . For tempera-
turesT,Tc , there is coexistence between anA-rich liquid
and aB-rich liquid, while forT.Tc , the system comprises
homogeneous mix ofA andB particles. Precisely atTc , the
system will be characterized by strong critical concentrat
fluctuations between theA-rich and B-rich phases. Such a
demixing transition is analogous to that occurring at the cr
cal point of a simple spin-1

2 Ising model. The difference for
an off-lattice fluid, however, is that the demixing temper
ture depends on the density. Consequently, one obtain
critical line of consolute pointsTc(r) @or Tc(m)#, which is
commonly referred to as the ‘‘l line.’’

In addition to exhibiting consolute critical behavior, b
nary fluids can also exhibit liquid-vapor~LV ! coexistence, in
much the same way as does a single-component fluid
transpires, however, that the LV phase behavior of bin
mixtures is considerably richer than that of simple fluid
This difference is traceable to the additional ingredient
concentration fluctuations, which couple to the density flu
tuations and can radically alter the LV phase behavior. Si
2201 © 1998 The American Physical Society
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2202 PRE 58N. B. WILDING, F. SCHMID, AND P. NIELABA
concentration fluctuations are strongest on thel line, one
expects that alterations to the LV coexistence behavior
be greatest where this line approaches the LV coexiste
curve.

Perhaps not surprisingly, binary fluids mixtures are n
the only fluid systems in which first-order phase coexiste
behavior is influenced by the proximity of a critical line. Th
earliest sightings of such effects appears to have bee
analytical studies of various lattice-based fluid models@3–5#.
Some time later, a detailed Landau theory study of a mo
for sponge phases in surfactant solution@6# revealed a rich
variety of first-order phase behaviors as the path of thel line
was varied. More recently, similar behavior was uncove
in extensive mean-field and density-functional theory inv
tigations of a number of symmetrical continuum fluid mo
els, namely, the classical Heisenberg spin fluid@7–10#, a
dipolar fluid model@11,12#, and the van der Waals–Pot
fluid @13#.

Despite dealing with ostensibly quite distinct models, t
gross features of the mean-field phase behavior emer
from these studies appears to be essentially model inde
dent. This behavior is illustrated schematically in Fig. 1 a
involves three possible LV phase diagram topologies,
pending on the path of the critical line relative to the LV lin
To describe this behavior we shall employ the language
the symmetrical binary fluid. In so doing, we anticipate t
result of Secs. III and IV, namely, that the same scenari
played out in this case too. Of course, to obtain the co
sponding behavior for other systems, e.g., the magneti
dipolar fluids, one need only substitute the appropriate
menclature, e.g., ‘‘mixed fluid’’→ ‘‘paramagnetic fluid.’’

Figure 1~a! depicts schematically the mean-field pha
diagram obtained when the model parameters are ch
such that thel line approaches the first-order phase bou
ary well below the liquid-vapor critical point. In such a situ
ation, thel line intersectsthe LV line at a critical end point
~CEP!. At the CEP, a critical liquid coexists with a noncrit
cal vapor. Below the CEP temperature one finds a triple
in which a vapor coexists with anA-rich liquid and aB-rich
liquid. Owing to the symmetry, these two liquids have t
same density.

Alternatively, for different model parameters, thel line
may intersect the LV line at the liquid-vapor critical poi
@Fig. 1~c!#. Under such conditions, phase coexistence
tween the vapor and the mixed fluid is preempted by
demixed fluid phase. One then obtains a tricritical po
@14,15# in which three phases~a vapor, anA-rich liquid, and
a B-rich liquid! simultaneously become critical.

The intermediate situation is shown in Fig. 1~b! and oc-
curs when thel line approaches the LV line at a temperatu
somewhat~but not greatly! below the liquid-vapor critical
temperature. In this case, the phase diagram combines
features of the previous two cases. One finds atriple point in
which a vapor coexists with a mixed liquid at intermedia
density and a demixed liquid of higher density@16#. Above
the triple-point temperature, a demixed vapor and a demi
liquid coexist at low and moderate densities, becoming id
tical above the liquid-vapor critical point. At higher dens
ties, a mixed liquid and the demixed liquid coexist, beco
ing identical at a tricritical point.

That the scenario described above is generic to a rang
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apparently distinct fluid models~e.g., dipolar, magnetic, and
binary fluids! is perhaps slightly surprising at first sight. O
closer examination, however, it becomes clear that the mo
differences are only superficial. All the systems in which th
behavior has yet been identified can, in essence, be rega
as fluids in which each particle carries an internal degree
freedom, e.g., a spin or dipolar moment. The symmetri
binary fluid model shares this behavior because the par
species label is analogous to a two-state ‘‘spin’’ variable

Notwithstanding the substantial body of analytical e
dence supporting the scenario of phase behavior show
Fig. 1, it must necessarily be regarded as somewhat tenta

FIG. 1. Schematic representation of the three types of ph
diagram for a symmetrical binary fluid mixture in the densit
temperature plane, as described in the text. The full curve is
first-order liquid-vapor coexistence envelope, while the das
curve is thel line of critical demixing transitions.
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given the notorious inability of mean-field theories to a
count accurately for critical behavior below the upper critic
dimension. In view of this, independent corroboration
computer simulation is clearly desirable and necessary
recent times, such studies have indeed started to appea

The first simulations to study the confluence of a critic
demixing line and a first-order LV line sought to elucida
the behavior when the intersection occurs at the LV criti
point, i.e., at a tricritical point@cf. Fig. 1~c!#. Investigations
of a two-dimensional spin fluid@17# demonstrated that th
tricritical point properties are identical to those of the tw
dimensional Blume-Capel model, as one might expect
universality grounds. Other studies, this time focusing on
three-dimensional classical Heisenberg fluid@10,18# and
spin-12 quantum fluids@19–21#, mapped the LV phase enve
lope and thel line around the tricritical point and compare
the results with mean-field calculations. Modest agreem
was found.

As regards the situation shown in Figs. 1~a! and 1~b!,
there is a still a paucity of simulation data. This is presu
ably traceable to the practical difficulties associated w
studying first-order phase coexistence deep within the t
phase region. The basic problem is the ergodic~free energy!
barrier to sampling both coexisting phases in a single sim
lation. This barrier arises because the phase space path
ing from one pure phase to another necessarily pa
through interfacial configurations of large free energy, h
ing a concomitantly low statistical weight. Such configur
tions occur only very rarely in a standard Monte Carlo~MC!
simulation. Fortunately, however, a recently introduc
biased-sampling technique known as multicanonical p
weighting @22# allows one to negotiate this barrier and th
obtain accurate estimates of coexistence properties@23#. The
efficacy of the method for investigating fluid phase coex
ence was demonstrated in@24#. Very recently, it has also
been employed to study critical end point behavior in
Lennard-Jones binary fluid model@25# @cf. Fig. 1~a!#. In this
study, the intersection with thel line was shown to engende
a singularity in the first-order phase boundary, in accord w
earlier theoretical predictions@26#. For the LV phase enve
lope, this singularity is manifest as a bulge in the liqu
branch density@as indicated schematically in Fig. 1~a!#.

Thus, while fragments of the picture of LV behavior
symmetrical fluids have been set in place by simulati
much clearly remains to be done before a reliable and c
prehensive overview emerges. In particular, no evidence
yet been reported for the existence of the triple-point beh
ior shown schematically in Fig. 1~b!. There has also been n
systematic simulation study of the full range of LV pha
behavior for asinglemodel. Consequently, little reliable in
formation exists concerning the manner in which one type
phase diagram evolves into another.

In the present work we have attempted to remedy
situation by performing a systematic MC simulation study
the LV phase behavior of a binary fluid mixture. The mod
studied has an interparticle potential of the square-well fo

U~r !5`, r ,s

U~r !52J, s<r ,1.5s ~2.1!
-
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U~r !50, r>1.5s.

Herer is the particle separation,J is the well depth or inter-
action strength, ands is the hard-core radius. In genera
there will be a number of different interaction strengt
JAA,JBB,JAB depending on the respective species of the
teracting particles. However, in the symmetrical case w
which we shall be concerned, one has simply

JAA~r !5JBB~r !5J~r !,
~2.2!

JAB~r !5dJ~r !.

The parameterd5JAB /J<1 determines the degree to whic
interactions between dissimilar species are less favor
than similar species interactions. Sinced is the only free
model parameter, it controls the complete range of poss
phase behavior.

Using MC simulation we obtain the liquid-vapor pha
behavior of this system for a range of values ofd. The results
are compared with explicit mean-field model calculations
order to assess the latter’s ability to reproduce the ac
phase behavior. Landau theory calculations are also repo
that furnish physical insight into the general mechanisms
which the coupling of density and concentration fluctuatio
engender the various types of observed phase behavior.
ditionally, we calculate~both explicitly for our model and
within Landau theory! the spinodal lines of the phase dia
gram. This reveals that for a certain range ofd there exists a
‘‘hidden’’ or metastable binodal, the presence of which
expected to have implications for the system dynamics.

The remainder of our paper is organized as follows.
Sec. III we detail the explicit mean-field and general Land
theory calculations for the phase diagram as a function od.
The Monte Carlo simulation results for the liquid-vap
phase behavior are presented in Sec. IV. Finally, in Sec
we conclude by comparing the simulation and mean-fi
results and discussing prospects for future work.

III. MEAN-FIELD CALCULATIONS

In this section we present two complementary mean-fi
studies of symmetrical binary mixtures. The first is an e
plicit investigation of the square-well binary mixture mode
also studied by simulation in Sec. IV. The second is a g
eral Landau theory treatment aimed at obtaining phys
insight into the origin of the various phase diagram topo
gies.

A. Explicit model calculations

Let us consider a binary fluid in which the two partic
speciesA and B interact via the symmetrical square-we
potential of Eqs.~2.1! and~2.2!. For analysis purposes it wil
prove useful to decompose this potential into a hard-sph
component plus a short-range attractive part. To this end
rewrite Eq.~2.1! as

U~r !5UHS~r !1J~r !, ~3.1a!

where
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UHS~r !5H ` for r ,s

0 otherwise
~3.1b!

and

J~r !5H 2J for s<r<1.5s

0 otherwise.
~3.1c!

For a binary fluid, the interaction between two particl
depends on their respective species. To deal with this
introduce a two-state species variablesi taking the valuesi
51 (21) when thei th particle is of typeA (B). The total
configurational energy can then be written

FN~$r ,s%!5(
i , j

UHS~r i j !1(
i , j

J~r i j !~11sisj !/2

1(
i , j

dJ~r i j !~12sisj !/2. ~3.2!

To obtain the liquid-vapor phase envelope and thel line,
we adopt an approach similar to that employed in Refs.@27–
29,21,17,30#. In the thermodynamic limit, the~Helmholtz!
free energy densityf (r,T) as a function of the number den
sity r5N/V and temperatureT is given by

f ~r,T!5 lim
V→`

21

bV
ln tr@exp~2bFN!#. ~3.3!

Now, within the mean-field approximation, one assumes
interaction between anA-type particle and an effective fiel

hA5J11~J2/N!(
i .1

si5J11J2m ~3.4!

and an interaction between aB-type particle and an effective
field

hB5J12~J2/N!(
i .1

si5J12J2m. ~3.5!

Here J6 are effective potentials andm5(NA2NB)/(NA
1NB). Since the coordination number in the fluid is dens
dependent, we make the approximation

J652rE d3r
JAA~r !6JAB~r !

2
g~r !, ~3.6!

where the fluid correlation functiong(r ) is taken from the
Percus-Yevick solution for hard spheres@31#.

The mean-field configurational energy is then

FMF
N ~$r ,s%!5UHS~r i j !2

1

4(i 51

N

@hA~11si !1hB~12si !#,

~3.7!

from which the free energy at constantT follows as
e

n

f MF~r!5 lim
V→`

21

bV
ln tr@exp~2bFMF

N !#

5 f HS~r!2r
J1

2
1min

m
FJ2rm2

2

2
r

b
ln 2 cosh~bJ2m!G . ~3.8!

Here f HS(r) is the free energy of a reference system co
prising a hard-sphere single-component fluid. The third te
on the right-hand side of Eq.~3.8! is minimized for

m5tanh@bJ2m#. ~3.9!

As f (r) is not always a convex function of the density, w
take the convex envelope in order to find the coexiste
densities for the first-order LV transition.

We also wish to obtain the phase diagram in them-T
plane. To achieve this one needs to consider the grand
tential f (r)1mr, with m the chemical potential. Minimizing
this yields the pressure

p~r,m!5min
r8

@2 f ~r8!1mr8#. ~3.10!

The coexistence chemical potential is then found by dema
ing equality of both the chemical potential and the press
in the coexisting phases.

The resulting phase diagrams in ther-T plane are shown
in Figs. 2~a!–2~d!, with the m-T phase diagrams shown a
insets. For large values ofd,1 we find a LV coexistence
region and al line at high densities that intersects the L
line at a critical end point. The CEP induces an anomaly
kink in the liquid branch density, which is clearly visible i
Fig. 2~a!. This anomaly is the mean-field remnant of th
specific heatlike singularity studied theoretically and comp
tationally in Refs.@26,25#. Because the mean-field specifi
heat exhibits a jump rather than a divergence at critical
the anomaly takes the form of an abrupt change in the g
dient of the liquid branchdr l /dT. If fluctuations are taken
into account, however,dr l /dT diverges at the CEP@25#.

As d is reduced, the CEP anomaly grows until at arou
d50.7 a small peak emerges@cf. Fig. 2~b!#. The point at
which this occurs constitutes atricritical end point as dis-
cussed in Sec. III B. On further reduction ofd, the peak
develops until the situation shown in Fig. 2~c! is attained.
Here the first-order coexistence envelope displays a tr
point at which a vapor coexists with a mixed liquid at inte
mediate density and a demixed liquid of higher dens
Above the triple-point temperature, a vapor and a demix
liquid coexist at low and moderate densities, merging at
liquid-vapor critical point. At higher densities a mixed liqui
and the two symmetrical demixed liquids coexist, becom
identical at a tricritical point.

If d is reduced further still, one reaches a point~for d
,0.605) at which the triple-point temperature equals the
critical-point temperature. Thereafter, the liquid-vapor cr
cal point is lost and only a tricritical point remains, as show
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FIG. 2. Mean-field phase diagrams in ther-T plane for variousd, as described in the text.~a! d50.72,~b! d50.70,~c! d50.65, and~d!
d50.57. The insets show the corresponding phase diagrams in them-T plane. Full lines represent first-order phase coexistence and da
curves represent thel line. The demixed fluid~DF!, mixed fluid ~MF!, and vapor (V) phases are also marked.
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for the cased50.57 in Fig. 2~d!. No further topological
changes in the phase diagram are observed asd is reduced to
zero.

Although the liquid-vapor critical point disappears fro
the equilibrium phase diagram ford,0.605, it is interesting
to note that it nevertheless remains inmetastableform for
some range ofd. This is illustrated in Fig. 3~a!, which shows
the phase diagram ford50.57 together with the three spin
odals delineating the limits of metastability of the demix
fluid, mixed fluid, and vapor~markedS1, S2, andS3). Also
shown is the ‘‘hidden binodal’’ for coexistence between
vapor and a demixed liquid, calculated by neglecting
coupling of the concentration to the density. Clearly, for t
value of d, the hidden binodal and the liquid-vapor critic
point ~at which it terminates! both lie within the metastable
region. For smallerd&0.45, however, the metastable critic
point moves outside the limit of metastability and the hidd
binodal is lost @see, e.g., Fig. 3~b!#. Although the phases
corresponding to the hidden binodal are not observabl
equilibrium, theyare expected to influence the dynamic
properties of the system. We return to this point in mo
detail in Sec. III B.

B. General Landau theory considerations

We now turn to analyze the system from a more gene
point of view. Clearly, we are dealing with a two-orde
e

n

at

e

al

parameter problem, i.e., the densityr5N/V and the number
difference order parameterm5(NA2NB)/N. In a symmetri-
cal fluid, the Hamiltonian has to be invariant under sign
versal of m. The Landau expansion of the grand potent
thus takes the general form

F5a
~r2r0!2

2
1

~r2r0!4

4
2m~r2r0!1A

m2

2
1

m4

4

2
B

2
m2~r2r0!, ~3.11!

wherem is the chemical potential andr0 is a reference den
sity in the liquid-vapor coexistence region, chosen such t
the cubic term proportional to (r2r0)3 vanishes. An expan-
sion of this type has been discussed in a different contex
Roux et al. @6#; it applies generally to fluids with an add
tional Ising-like ordering tendency. In the case
Heisenberg-type ordering, e.g., in a ferromagnetic fluid,
Landau expansion looks very similar withm simply replaced
by the vectormW and many of the conclusions drawn belo
still hold. The liquid-vapor critical point of the mixed fluid is
found ata51 and could the fluid be kept at fixed densityr0,
it would demix or order atA50.

Phase diagrams of such fluids are often discussed in te
of an ‘‘interaction ratio’’ R, comparing the strength of th
ordering or demixing tendency in the fluid with the overa



l-

s
p-
an

tia
ng
r
t
th
ze
th
i

a
e
re
io

eter

f

se
nds

itical

i-

r
r
ver,

co-

e.
uid
-

ts

-
ase

sity.
er to
e is

2206 PRE 58N. B. WILDING, F. SCHMID, AND P. NIELABA
attractive interactions between particles@7,9,10#. R corre-
sponds to 12d in our model, toJ/K in the Blume-Emery-
Griffiths model @35#, to the dipole momentm in reduced
units in @12#, and to 1/Tc

0 in Ref. @11#. It is generally found
that increasingR drives the phase behavior from the topo
ogy depicted in Fig. 1~a! via Fig. 1~b! towards Fig. 1~c!, i.e.,
a critical end point turns into a tricritical point, which move
up in temperature, until the liquid-vapor critical point disa
pears in the region of coexistence between demixed
mixed liquid phases.

Although the interaction ratio appears to be an influen
quantity, it is important to note that the basic factor drivi
the phase behavior is thecoupling between the two orde
parameters. In Eq.~3.11! it is described by the last term. A
B50, no tricritical point can be expected, regardless of
interaction ratio. Therefore, in what follows we shall analy
the phase behavior in terms of the coupling strength ra
than the interaction ratio. The relation between the two w
be discussed later.

We will focus on the transition from a topology with
critical end point to one with a tricritical point and assum
that we are well below the liquid-vapor critical temperatu
a,0. It is then convenient to rescale the Landau expans
~3.11! such that

FIG. 3. ~a! Liquid-vapor phase envelope in ther-T plane for
d50.57. Also shown are the spinodalsS1, S2, andS3 and the ‘‘hid-
den’’ binodal as described in Secs. III A and III B.~b! Phase enve-
lope and spinodals ford50.45, by which point the metastable LV
critical point has been lost.
d

l

e

er
ll

n

F5u
m̂2

2
1

m̂4

4
2

%2

2
1

%4

4
2m̂%1k~12% !m̂2,

~3.12!

wherem̂5m/(A2a)3, %5(r2r0)/A2a, m̂5m/A2a, and
F is written in units ofa2. The parameterk5B/2A2a then
describes the effective coupling between the order param
and the density. The parameteru5A/(2a)22k is tempera-
turelike: u}(T2TCEP), whereTCEP is the temperature o
the ~stable or unstable! critical demixing point at fixed den-
sity %51. The phase behavior is found by minimizingF
with respect tom̂ and%.

At k50, the ordering behavior and the liquid-vapor pha
separation decouple and do not affect one another. One fi
coexistence of a liquid (%51) and a vapor (%521) at m̂
50 and these phase boundaries are crossed by the cr
ordering (l) line atu50. If a small couplingk is turned on,
the ordering temperature increases with the density

uc~% !52k~%21!. ~3.13!

Thus thel line shifts at the LV coexistence line. Techn
cally, the Landau expansion~3.12! predicts two critical end
points, one on the liquid side atu50 and one on the vapo
side atu524k. In all fluids studied so far, only the uppe
one has been seen. Situations with two CEPs are, howe
encountered when a critical line intersects a liquid-solid
existence region@7,12#.

Next we study the stability of the demixed liquid phas
The order parameter in the homogeneous demixed liq
takes the valuem̂25uc(%)2u. The determinant of the sta
bility matrix there is given by 4m̂2@(3%221)/22k2#. Hence
the demixed phase becomes unstable for%,%c , with the
spinodal line

%c5A~2k211!/3. ~3.14!

A tricritical point is found when the spinodal line intersec
the critical line~3.13!. This requires%c.1, i.e., the coupling
k has to be larger than a limiting valuek051. The tricritical
point is then located at

u t5uc~%c!, % t5%c ~3.15!

or

m̂ t5
2

3
A112k2

3
~k221!. ~3.16!

We conclude that the couplingk between the order pa
rameter and the density determines the topology of the ph
diagram. If k exceedsk0, the topology switches from one
with a critical end point@Fig. 1~a!# to one with a tricritical
point @Fig. 1~b!#. From a physical point of view,k basically
reflects the correlations between order parameter and den
For example, the response of the average order paramet
a change of chemical potential in the demixed liquid phas
given by
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]m̂

]m̂
}^m̂%&2^m̂&^%&}k

~uc2u!2z

%2%c
, ~3.17!

where the exponentz is given by z51/2 in mean-field
theory.@Scaling arguments yieldz5(g1a)/2, whereg and
a are the usual Ising critical exponents of the order para
eter susceptibility and the specific heat.#

It is instructive to investigate the relationship betweenk
and the interaction ratioR. When R increases, the critica
end point temperatureTCEP moves closer to the liquid-vapo
critical temperatureTc0. Assuminga}Tc02T, this implies
that the effective couplingk}A1/(Tc02T) increases also
and diverges asTCEP approachesTc0. As long as there is any
coupling between the density and the order parameter@i.e.,
B.0 in Eq. ~3.11!#, tuning R has the effect of tuning the
coupling. Thus our arguments are supported by our own
plicit model calculations and by the results quoted ear
@7,9–12,35#.

Next we discuss the implications for the LV phase boun
ary. The small coupling limitk,k0 has been studied in
detail in Ref.@25#. In chemical potential space, the critic
end point induces a weak singularity in the first-order liqu
vapor line@26#

m~T!5m reg~T!2Uutu22a, ~3.18!

wherem reg(T) is an analytical function of the temperatureT,
t5(T2TCEP)/TCEP , and U is a critical amplitude. In the
Landau theory framework,m reg is simply given bym reg

5m̂ reg[0.
The density of the vapor phase at coexistence behave

a similar way

rg~T!5rg,reg~T!2Vgutu22a, ~3.19!

whereas the density of the liquid phase shows the mar
hump indicated in Fig. 1~a!, given by@25#

r l~T!5r l ,reg~T!2Vl utu12a. ~3.20!

In the strong coupling limitk.k0, one deals with the
simple case in which two first-order lines meet at a trip
point. One thus expects a kink inm(T) and inrg(T) and the
density of r l(T) jumps to the coexisting demixed liqui
phase@cf. Fig. 2~c!#. The two regimes meet atk5k0, where
the critical end point turns into a tricritical end point~TEP!
@36# @cf. Fig. 2~b!#. Within our Landau theory, we have ca
culated the phase boundaries in the vicinity of a tricritic
end point. Since we expect thatk varies with temperature
we consider a pathk5k01Ku, whereu}T2TTEP as de-
fined above. Our results to leading order inu are summarized
as follows: For the chemical potential of the liquid-vap
line, we find

m̂50~u.0!,

m̂52~ uuu/3!3/2~u,0!. ~3.21!

The rescaled densities of the vapor phase~spectator phase
%2) and the liquid phase (%1) are given by
-

x-
r

-

-

in

d

l

%7571 ~u.0!,

%25212 1
2 ~ uuu/3!3/2 ~u,0! ~3.22!

%1511~ uuu/3!1/2 ~u,0!.

Note that these results agree with the arguments present
@25# if one insertsa t51/2, the mean-field value of the expo
nenta at the tricritical point. Mean-field theory is expecte
to yield the correct tricritical behavior in our system sin
the upper critical dimension of a tricritical point isdu53.

We close this subsection with a discussion of hidden p
of the phase diagram. To this end, we return to Eq.~3.11!
and perform a general stability analysis. We consider
demixed phase atm5@A2B(r2r0)#1/2 and the mixed
phase atm50.

The conditions for stability of the demixed phase ha
already been discussed earlier. One finds a spinodal at

r2r056S1 with S1* 5A~B222a!/6, ~3.23!

which is equivalent to Eq.~3.14! in nonrescaled units. Fo
ur2r0u,S1* , the demixed phase becomes unstable with
spect to phase separation into a demixed liquid and a va

In the present context, the stability of the mixed liqu
phase is more interesting. The stability analysis yields t
spinodals: At

ur2r0u,6S2* , S2* 5A2a/3, ~3.24!

the demixed liquid phase is unstable with respect to ph
separation into a demixed liquid and its vapor and at

r2r0.S3* 5A/B, ~3.25!

it becomes unstable with respect to demixing. As long aA
.0 and the couplingB is sufficiently small, there exists a
region on the high-density side of the fluid,r.r0, where the
mixed liquid phase can be metastable or even stable

A2a/3,r2r0,A/B.

In that case, a binodal can be found atur2r0u5A2a, which
may be stable or hidden in the metastable region.

The spinodals and the hidden binodal are indicated in F
3. Note that both the coefficientsa and A depend roughly
linearly on the temperatureT. This explains the linear form
of S2 in the density-temperature plane as opposed to
parabolic form ofS3.

The hidden binodal disappears completely as soon aA
<0 at a50, i.e., as soon as the spinodalS3 meetsS2 at the
‘‘hidden critical point’’ or beyond~at r,r0). This criterion
is independent of the couplingB. The strength of coupling
thus has no influence on the appearance of a hidden bino
It does, however, affect the range of metastability of t
hidden binodal, i.e., the temperature interval before it is l
by intersecting the spinodalS2.

Of course, the concepts of spinodals and metastab
only really make sense within a mean-field treatment a
strictly speaking lose their physical meaning as soon as fl
tuations are taken into account. However, a discussion of
metastable and unstable regions is still useful in the con
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of the dynamical properties of the system. Consider, for
stance, a binary fluid with interactions corresponding to
situation shown in Fig. 3~a!, at densityr5r0, which is
quenched from some high temperature into the coexiste
region slightly below the ‘‘metastable critical point.’’ On
can then expect ‘‘two-stage demixing.’’ In the first stage, t
fluid will separate into domains of vapor and mixed liqu
and the separation of these domains will be accelerated
the driving force of gravitation. In the second stage, the
uid phase will slowly demix and droplets of demixed liqu
will additionally nucleate from the vapor phase. If the inte
actions of the fluid correspond to the situation depicted
Fig. 3~b!, on the other hand, no intermediate stage will a
pear and the fluid will demix and phase separate simu
neously.

IV. MONTE CARLO STUDIES

A. Simulation details

Many features of the simulation techniques employed
the present study have previously been detailed elsew
@37,24,17#. Accordingly, we confine the description of ou
methodology to its barest essentials, except where neces
to detail a new aspect.

We assume our system to be contained in volumeL3 and
to be thermodynamically open so that the total number d
sity and concentration can fluctuate. The associated~grand
canonical! partition function is

ZL5 (
N50

`

(
$si %

)
i 51

N H E drW i J e2b[F~$rW,s%!1mN] . ~4.1!

Here the species labelsi51,21 denotes, respectively, th
two particle speciesA and B, N5NA1NB is the total par-
ticle number,b51/kBT is the inverse temperature, andm is
the chemical potential. The configurational energy densityF
is given by

F~$rW,s%!5(
i , j

U~r i j ,sisj !, ~4.2!

where the symmetrical square-well interparticle potentiaU
is defined in Eqs.~2.1! and ~2.2!.

Grand canonical MC simulations were performed usin
standard Metropolis algorithm@38,24#. The MC scheme
comprises two types of operations:~i! particle insertions and
deletions and~ii ! particle identity transformationsA→B and
B→A. Since particle positions are sampled implicitly via t
random particle transfer step, no additional translation al
rithm is required.

To simplify identification of particle interactions, we em
ployed a linked list scheme@38#. This involves partitioning
the periodic simulation space of volumeL3 into l 3 cubic
cells, each of linear dimension equal to the interaction ran
i.e., L/ l 51.5. We chose to study two system sizes cor
sponding tol 58 and l 510, containing, at LV coexistence
approximate average particle numbers^N&5550 and 1100,
respectively. Equilibration periods of up to 23106 Monte
Carlo steps~MCS! were employed and sampling frequenci
were 100 MCS for thel 58 system to 150 MCS for thel
510 system. Production runs amounted to 23107 MCS for
-
e

ce

by
-

n
-
-

n
re

ary

n-

a

-

e,
-

the l 58 and 53107 MCS for the l 510 system size. At
coexistence, the average acceptance rate for particle tran
was approximately 10%, while for spin-flip attempts the a
ceptance rate was approximately 40%.

In this work we wish to explore the parameter spa
spanned by the three variables (m,T,d). To accomplish this,
without having to perform a very large number of simul
tions, we employed the histogram reweighting techniq
@39#. Use of this technique permits histograms obtained
one set of model parameters to be reweighted to yield e
mates appropriate to another set of model parameters
enable simultaneous reweighting in all three fieldsm,T,d,
one must sample the conjugate observables (r,u,ud), with
r5N/V the number density,u5F/V the configurational en-
ergy density, andud that part ofu associated with interac
tions betweendissimilarparticle species. In addition to thes
variables, we have also accumulated the quantitym̃5(NA
2NB)/V5rm, which gives a measure of the degree ofA-B
ordering in the system.

As mentioned in the Introduction, standard grand cano
cal simulations, deep within the LV coexistence region,
hampered by the large free energy barrier separating the
coexisting phases. This barrier leads to metastability effe
and prohibitively long correlation times. To circumvent th
difficulty, we have employed the multicanonical preweigh
ing method@22#, which encourages the simulation to samp
the interfacial configurations of intrinsically low probability
This is achieved by incorporating a suitably chosen wei
function in the MC update probabilities. The weights a
subsequently ‘‘folded out’’ from the sampled distribution
yield the correct Boltzmann distributed quantities. Use
this method permits the direct measurement of the distri
tion of observables at first-order phase transitions, even w
these distributions span many decades of probability. Det
concerning the implementation of the techniques can
found in Refs.@22,17#.

B. Method and Results

Using the multicanonical simulation scheme, we have
tained the density distributionp(r) for a number of states
close to the LV coexistence curve and for a number
choices ofd. We begin by probing the regime of critical en
point behavior.

On the basis of the mean-field results of Sec. III, C
behavior is expected to occur for larged,1. For d&1, the
CEP will occur at very low temperatures relative to the L
critical point~i.e.,T!Tc0), but will move to higher tempera
tures asd is reduced. At some point asd is reduced, the
phase diagram is predicted to evolve into a triple-point
pology. Thus, in seeking to observe CEP behavior o
should aim to setd large and to search at low temperature
Unfortunately, very low temperatures are associated w
high liquid densities at LV coexistence and these are in
cessible to our GCE scheme due to the prohibitively sm
particle transfer acceptance rate. In fact, we find that
largest value ofd for which the density fell within the ac-
cessible range (r&0.7) wasd50.72. Although this value of
d is not as large as one might hope to attain, it neverthe
transpires that CEP behavior occurs. This is demonstrate
Fig. 4, which shows the liquid and vapor coexistence den
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ties for this value ofd obtained as the first moment of th
respective peaks ofp(r) for the l 58 system size@25#. The
data were obtained by reweighting@39# four histograms
spanning temperatures in the rangeT50.9921.05 and coex-
istence was located using the equal peak-weight criterion
p(r) @40,24#. Also shown in the figure is the measured loc
of the critical line.

Clearly the data of Fig. 4 display an anomaly in the liqu
branch density close to the intersection point of thel line
and the liquid branch~i.e., at the CEP!. In the thermody-
namic limit, the liquid branch density is expected to exhibi
cusplike singularity at the CEP, as given in Eq.~3.20!. In our
finite-size system, however, this critical singularity
smeared out and shifted, so that only a rounded depressi
the coexistence envelope is visible@25#. Since these aspect
of the CEP singularities have recently been discussed in
tail elsewhere@25#, we shall not pursue them further her
Instead we shall proceed to consider what happens asd is
made smaller still.

Further reducingd continues to shift the CEP closer to th
LV critical point. As one reachesd50.675, however, the
phase diagram changes topology. We find that above a
tain temperature the liquid peak inp(r) decomposes into
two peaks. This is shown in Fig. 5 for thel 510 system size
at a temperatureT51.044. Evident from this figure are tw
closely separated overlapping peaks, the presence of w
signifies incipient triple-point behavior. It follows that fo
this d andT, the system lies close to the tricritical end poi
that heralds entry into the triple-point phase diagram top
ogy @cf. Fig. 2~b!#. Actually, we believe that the TEP lie
close tod50.68 since this is the value at which we fir
observe the appearance of a shoulder in the liquid peak.
sufficiently large system, this shoulder would presumably
solve itself into a distinct peak. We have not, however,
tempted to pinpoint the location of the TEP more precise
as this would require a full finite-size scaling analysis, a ta
beyond the scope of the present study.

Using histogram reweighting, we have monitored the te
perature dependence ofp(r) asd is reduced below the valu
at which the TEP occurs. Figure 6~a! shows a selection o

FIG. 4. Liquid-vapor coexistence curve in ther-T plane ford
50.72, showing the vapor (V), mixed fluid ~MF!, and demixed
fluid ~DF! phases. The results were obtained from the measu
peak positions of the coexistence density distributions for thl
58 system size. Statistical errors do not exceed the symbol si
or

in

e-

er-
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l-

a
-

t-
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k

-

density distributions ford50.665, for which a triple point
occurs at some temperatureTTP,Tc0, i.e., below the liquid-
vapor critical temperature. The corresponding forms ofp(m̃)
are shown in Fig. 6~b!. At the triple point, a demixed liquid

d

s.

FIG. 5. Measured near-coexistence density distributionp(r) for
T51.044 andd50.675 showing the three-peak structure discus
in the text. The distribution is normalized to the unit integrat
weight and statistical errors are comparable to the symbol size

FIG. 6. ~a! Coexistence density distributionsp(r) for d
50.665 at a selection of temperatures spanning the triple-point t

perature. ~b! The corresponding form ofp(m̃) where m̃5mr
5(NA2NB)/V. Lines are guides to the eye. Statistical errors
comparable to the symbol sizes.
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coexists with a mixed liquid and its vapor. ForT.TTP ,
there is phase coexistence either between the mixed li
and its vapor or between the mixed and demixed liquid@cf.
Fig. 2~c!#. The liquid-vapor coexistence terminates at the L
critical point, while the mixed-demixed liquid coexistenc
curve terminates at a tricritical point. From Fig. 6~a! one sees
that for d50.665, the tricritical point temperature lie
slightly below the LV critical point temperature, as ev
denced by the fact that on increasingT the liquid peaks
merge before the liquid and vapor peaks do so.

The coexistence density distributions ford50.66 are
shown in Fig. 7~a! for temperatures spanning the triple-poi
temperature. For thisd, the tricritical point is sufficiently
well separated from the LV line that it is possible to disti
guish the liquid-vapor and liquid-liquid branches by app
priately tuning the chemical potential. This is demonstra
in Fig. 7~b!, which showsp(r) for the two coexistence
curves atT51.058. The different degree of order in the tw
liquid phases is clearly seen in the distributionp(m̃), shown
in Fig. 7~c!. One notices, however, that both the density d
tributions show signs of the third phase. This reflects
closeness of the two coexistence curves at thisd and T, as
evidenced by the very small chemical potential differen
Under such conditions, finite-size smearing effects rende
difficult to completely isolate two of the three phases.

Finally in this section, we consider the phase behavior
d50.65. Coexistence forms ofp(r) at selection of tempera
tures are shown in Fig. 8. One observes that on increa
temperature, the low-density vapor peak moves smoo
over to merge with the high-density peak of the ordered
uid. At no point is a three-peaked structure visible. This s
nario is consistent with the phase behavior shown schem
cally in Fig. 2~d!, in which the vapor and the demixed liqui
phases merge at a tricritical point.

V. DISCUSSION AND CONCLUSIONS

In summary, we have used multicanonical Monte Ca
simulations and histogram reweighting techniques to st
how the liquid-vapor phase behavior of a symmetrical bin
mixture depends ond, the ratio of interaction strengths fo
dissimilar and similar particle species. Ford&1, the phase
diagram exhibits a critical end point at temperatures w
below the liquid-vapor critical point. Decreasingd shifts the
critical end point closer to the liquid-vapor critical point. F
d'0.68, however, the critical end point becomes locally u
stable and a triple point occurs in which vapor, a mix
liquid, and a demixed liquid all coexist. For temperatur
above the triple point there is coexistence either betwee
high-density demixed fluid and a moderate-density mix
fluid or between a mixed fluid and its vapor. Decreasingd
still further pushes the triple point to higher temperatu
until for d,0.65 it eventually equals that of the isotrop
liquid-vapor critical point. Thereafter, the mixed liquid pha
is preempted by the demixed liquid phase and the liqu
vapor coexistence curve terminates in a tricritical point.

Thus our simulation results confirm the qualitative pictu
of phase diagram topology emerging from mean-field the
as set out in Secs. II and III. These theories seem quite
cessful in capturing key features of the behavior such as
existence of a coexistence curve anomaly at the CEP,
id
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existence of the triple-point regime, and the crossover t
purely tricritical regime. Additionally, our Landau theor
study of Sec. III B provides useful physical insight into th
manner in which the coupling of density and concentratio
leads to the observed phase behavior.

In quantitative terms, however, the mean-field theories
less reliable. Owing to the neglect of correlations, they p
dict neither the correct exponents for the coexistence cu

FIG. 7. ~a! Selected coexistence density distributions ford
50.66, spanning the triple point.~b! Density distribution forT
51.058 for two different values of the chemical potential.~c! The

corresponding forms ofp(m̃), wherem̃5mr5(NA2NB)/V. Lines
are merely guides to the eye and statistical errors are comparab
the symbol sizes.
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singularities at the CEP nor the shape of the near-critical
coexistence curve. The values they yield for quantities s
as the LV critical temperature are also at variance with sim
lation estimates: e.g., ford50.72 mean-field calculation
predict that the LV critical temperature isTc0

m f51.172, while
simulation givesTc0

sim51.06(1). In view of this, the appar-
ently better agreement between the mean-field and sim
tion estimates of the CEP ford50.72, i.e.,TCEP

m f 51.002 and
TCEP

sim 51.02(1), are presumable fortuitous. For three
dimensional tricritical behavior, mean-field theory is at le
expected to yield the correct tricritical exponents since
upper critical dimension for such behavior isd53 @15#. Al-
though we have not attempted to probe the universal asp
of the tricritical behavior, our results show that estimates
the tricritical temperature are not reproduced by the simu
tions, at least close to the triple-point regime. However, t
may partly be the result of crossover effects associated
the relative proximity of the LV critical and tricritical points

The mean-field estimates are also inaccurate regarding
sensitivity of the phase diagram topology to changes ind.
The calculations of Sec. III A predict that the regime
triple-point topology lies in the range 0.605,d,0.708. In
contrast, the simulation results show this range to be con
erably smaller, namely, 0.65&d&0.68. Indeed, were it no
for our use of histogram reweighting to scan the phase

FIG. 8. Selected near-coexistence density distributions fod
50.65 at a number of subtricritical temperatures. Statistical er
are comparable to the symbol sizes.
oc
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havior as a function ofd, we might easily have missed thi
regime altogether. Thus it seems that more sophisticated
uid state theories are called for before the goal of accura
predicting the phase behavior of simple binary fluid mod
is attained. Presumably, any successful theory must be
pable of dealing with both the critical and noncritical r
gimes of the phase diagram. In fact, one such theory,
hierarchical reference theory@32#, has recently been pro
posed. It would be interesting to see whether or not it ac
rately reproduces the phase behavior of the present mod

With regard to further work on this model, one partic
larly interesting project would be to investigate the predic
existence of the hidden binodal and associated metast
critical point. The occurrence of metastable critical poin
was discussed by Cahn@33# and later found in lattice gas
models by Hall and Stell@3#. More recently it has been sug
gested that they occur in colloidal fluids close to the freez
line @34#, in dipolar fluids@12#, and in models for water@41#.
Since the present model offers a computationally tracta
system, it might usefully be employed as a test bed for stu
ing the generic features of the metastable critical point. T
could feasibly be achieved by quenching the system fr
high temperature into the unstable regime just below
metastable critical point. As described in Sec. III B, th
should result in a two-stage demixing process in which
metastable mixed liquid phase appears for a transitory pe
before eventually demixing at later times.

Additional interesting work would be to look at the equ
librium phase behavior of the symmetrical mixture as a fu
tion of d,0. Landau theory@6# predicts that asd is made
increasingly negative, the tricritical point transforms fir
into a double critical end point before a critical end po
emerges on thevaporside of the LV coexistence envelope.
would certainly be worthwhile to assess whether or not t
scenario is correct.
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