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Using Monte Carlo simulation and mean-field calculations, we study the liquid-vapor phase diagram of a
square-well binary fluid mixture as a function of a parameéteneasuring the relative strength of interactions
between particles of dissimilar and similar species. The results reveal a rich variety of liquid-vapor coexistence
behaviors a$ is tuned. Specifically, we uncover critical end point behavior, a triple point involving a vapor
and two liquids of different density, and tricritical behavior. For a certain rang® tie mean-field calcula-
tions also predict a “hidden’{metastablgliquid-vapor binodal[S1063-651X98)06308-9

PACS numbg(s): 64.70.Fx, 64.60.Fr, 05.70.Jk

[. INTRODUCTION turns out to reveal a rich variety of interesting phase behav-
ior.
One of the principal deficiencies in our understanding of
liquid mixtures is the nature of the link between the micro- Il. BACKGROUND

scopic description of the system and its macroscopic phase
behavior. For simple single-component fluids, the phase dia- The phase diagram of a symmetrical binary fluid mixture
gram topology is relatively insensitive to the microscopicis spanned by three thermodynamic fields4,h), whereT
properties of the molecules and exhibisven in systems is the temperaturey is the overall chemical potential cou-
with strong anisotropies or long-range interactjoadiquid-  pling to the total density, and is an ordering field coupling
vapor first-order line terminating at a critical point. In con- to the relative concentrations of the two fluid components,
trast, in binary mixtures, the interplay between the constituwhich we assume are allowed to fluctuate. In this work we
ent components leads to a wealth of intriguing phaseshall restrict our attention to the phase behavior in the sym-
behaviors[1,2] depending on the relative sizes of the mol- metry planeh=0, i.e., we stipulate that on average the num-
ecules and the strengths of their interactions. bers of A and B particles are equal. Additionally we shall
Although the various possible phase diagram topologiegssume that similar species interactions are energetically
have been placed into a number of categofi8s it is not ~ more favorable than dissimilar species interactions. This lat-
well understood(even at the mean-field leyeprecisely ter condition provides for a consolute poiritical demix-
which microscopic features are responsible for yielding ang transition) at some finite temperaturg;. For tempera-
given topology. Also unclear is the extent to which critical turesT<T,, there is coexistence between Arrich liquid
fluctuations affect the structure of the phase diagram, i.eand aB-rich liquid, while forT>T_, the system comprises a
whether the neglect of correlations in many analytical theohomogeneous mix oA andB particles. Precisely &, the
ries yields qualitatively(as well as quantitative)yincorrect  system will be characterized by strong critical concentration
phase diagrams. The task of accurately and reliably derivinfjuctuations between thA-rich and B-rich phases. Such a
the full phase behavior of a fluid mixture from the knowl- demixing transition is analogous to that occurring at the criti-
edge of its microscopic interactions therefore remains a greatal point of a simple spig- Ising model. The difference for
challenge. an off-lattice fluid, however, is that the demixing tempera-
Evidently, an accurate description of the phase behavioture depends on the density. Consequently, one obtains a
of a simple binary fluid model would provide a useful bench-critical line of consolute pointd.(p) [or T¢(x)], which is
mark against which current and future liquid-state theoriescommonly referred to as thex*line.”
could be tested. In the present work, we furnish such a de- In addition to exhibiting consolute critical behavior, bi-
scription by means of Monte Carlo simulations of a simplenary fluids can also exhibit liquid-vap@tV) coexistence, in
continuum model, the results of which we compare withmuch the same way as does a single-component fluid. It
mean-field calculations. For reasons of computational tractaranspires, however, that the LV phase behavior of binary
bility, we consider asymmetricabinary fluid model, i.e., one mixtures is considerably richer than that of simple fluids.
in which the two pure componenfsandB are identical and This difference is traceable to the additional ingredient of
only the interactions between particles of dissimilar speciesoncentration fluctuations, which couple to the density fluc-
differ. Notwithstanding its simplicity, however, the model tuations and can radically alter the LV phase behavior. Since
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concentration fluctuations are strongest on khéine, one @
expects that alterations to the LV coexistence behavior will 2 /
be greatest where this line approaches the LV coexistence
Perhaps not surprisingly, binary fluids mixtures are not P
the only fluid systems in which first-order phase coexistence
behavior is influenced by the proximity of a critical line. The
earliest sightings of such effects appears to have been in
analytical studies of various lattice-based fluid modais5].
Some time later, a detailed Landau theory study of a model
for sponge phases in surfactant solut{@h revealed a rich
variety of first-order phase behaviors as the path ohtliae
was varied. More recently, similar behavior was uncovered
in extensive mean-field and density-functional theory inves-
tigations of a number of symmetrical continuum fluid mod-
els, namely, the classical Heisenberg spin fllifd-10), a (b) A-line [

dipolar fluid model[11,12, and the van der Waals—Potts o

fluid [13] Liquid—vapor /, Tricritical
Despite dealing with ostensibly quite distinct models, the critical point {_ point
gross features of the mean-field phase behavior emerging
from these studies appears to be essentially model indepen-
dent. This behavior is illustrated schematically in Fig. 1 and
involves three possible LV phase diagram topologies, de-
pending on the path of the critical line relative to the LV line.
To describe this behavior we shall employ the language of
the symmetrical binary fluid. In so doing, we anticipate the
result of Secs. Il and IV, namely, that the same scenario is
played out in this case too. Of course, to obtain the corre- Density p
sponding behavior for other systems, e.g., the magnetic or

Temperature T

Critical end point

Density p

Demixed
Vapor

Temperature T

o/
Triple point

dipolar fluids, one need only substitute the appropriate no-
menclature, e.g., “mixed fluid"— “paramagnetic fluid.” ©
Figure Xa) depicts schematically the mean-field phase Mixed fluid /3 _yipe
diagram obtained when the model parameters are chosen T
Tricritical point ‘

such that thex line approaches the first-order phase bound-
ary well below the liquid-vapor critical point. In such a situ-
ation, the\ line intersectsthe LV line at a critical end point
(CEP. At the CEP, a critical liquid coexists with a noncriti-
cal vapor. Below the CEP temperature one finds a triple line
in which a vapor coexists with afs-rich liquid and aB-rich
liquid. Owing to the symmetry, these two liquids have the
same density.

Alternatively, for different model parameters, theline -
may intersect the LV line at the liquid-vapor critical point Density p
[Fig. 1(c)]. Under such conditions, phase coexistence be-
tween the vapor and the mixed fluid is preempted by thedia

demixed fluid phase. One then obtains a tricritical pointgherature plane, as described in the text. The full curve is the
[14,19 in which three phase@ vapor, amA-rich liquid, and st order liquid-vapor coexistence envelope, while the dashed

a B-rich liquid) simultaneously become critical. curve is thex line of critical demixing transitions.

The intermediate situation is shown in Figbland oc-
curs when the\ line approaches the LV line at a temperatureapparently distinct fluid modele.g., dipolar, magnetic, and
somewhat(but not greatly below the liquid-vapor critical binary fluid9 is perhaps slightly surprising at first sight. On
temperature. In this case, the phase diagram combines tldoser examination, however, it becomes clear that the model
features of the previous two cases. One findispde pointin  differences are only superficial. All the systems in which this
which a vapor coexists with a mixed liquid at intermediatebehavior has yet been identified can, in essence, be regarded
density and a demixed liquid of higher densji#y6]. Above  as fluids in which each particle carries an internal degree of
the triple-point temperature, a demixed vapor and a demixefteedom, e.g., a spin or dipolar moment. The symmetrical
liquid coexist at low and moderate densities, becoming idenbinary fluid model shares this behavior because the particle
tical above the liquid-vapor critical point. At higher densi- species label is analogous to a two-state “spin” variable.
ties, a mixed liquid and the demixed liquid coexist, becom- Notwithstanding the substantial body of analytical evi-
ing identical at a tricritical point. dence supporting the scenario of phase behavior shown in

That the scenario described above is generic to a range @ig. 1, it must necessarily be regarded as somewhat tentative

Temperature T

FIG. 1. Schematic representation of the three types of phase
gram for a symmetrical binary fluid mixture in the density-
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given the notorious inability of mean-field theories to ac- U(r)=0, r=1.50.
count accurately for critical behavior below the upper critical

dimension. In view of this, independent corroboration byHerer is the particle separatiod,is the well depth or inter-

computer simulation is clearly desirable and necessary. lction strength, andr is the hard-core radius. In general,

recent times, such studies have indeed started to appear. there will be a number of different interaction strengths
The first simulations to study the confluence of a critical jAA 388 jAB jenending on the respective species of the in-

demixing line and a first-order LV line sought to elucidate teracting particles. However, in the symmetrical case with

the behavior when the intersection occurs at the LV criticalyhich we shall be concerned, one has simply

point, i.e., at a tricritical poinfcf. Fig. 1(c)]. Investigations

of a two-dimensional spin fluif17] demonstrated that the IM(H) = 3BB(r)=J(r)

tricritical point properties are identical to those of the two- ' (2.2

dimensional Blume-Capel model, as one might expect on IM8(r) = 83(r)

universality grounds. Other studies, this time focusing on the '

three-dimensional classical Heisenberg fldit0,18 and ) .

spin4 quantum fluidg19—21, mapped the LV phase enve- | € parameted=J,g/J<1 determines the degree to which

lope and thex line around the tricritical point and compared |nterac.t|0.ns betwgen .d|35|m|.Iar Species are less favorable

the results with mean-field calculations. Modest agreemerH‘an similar SPEcies interactions. Singeis the only free .

was found. model parameter, it controls the complete range of possible

As regards the situation shown in Figsaland ib), Phase behavior. _ ) o
there is a still a paucity of simulation data. This is presum- USing MC simulation we obtain the liquid-vapor phase

ably traceable to the practical difficulties associated withP€havior of this system for a range of valuessofThe results

studying first-order phase coexistence deep within the two2'€ compared with explicit mean-field model calculations in

phase region. The basic problem is the ergdffiee energy order to assess the latter’'s ability to reproduce the actual
barrier to sampling both coexisting phases in a single simuP@se behavior. Landau theory calculations are also reported
lation. This barrier arises because the phase space path legf2t furnish physical insight into the general mechanisms by
ing from one pure phase to another necessarily pass ich the coupling of density and concentration fluctuations
through interfacial configurations of large free energy, hav_e_n_gender the various types of ob_s_erved phase behavior. Ad-
ing a concomitantly low statistical weight. Such configura-d'_t'o_na”y’ we calculate(both _epr|C|t!y for our model anc_i
tions occur only very rarely in a standard Monte CAMC) within La_ndau theory the spmoda! lines of the pha;e dia-
simulation. Fortunately, however, a recently introduceddram- This reveals that for a certain rangesdhere exists a

biased-sampling technique known as multicanonical pre-nidden” or metastable binodal, the presence of which is
weighting[22] allows one to negotiate this barrier and thus &XPected to have implications for the system dynamics.

obtain accurate estimates of coexistence propei2igs The The remainder of our paper is organized as follows. In
efficacy of the method for investigating fluid phase coexist-S€c. I we detail the explicit mean-field and general Landau

ence was demonstrated ja4]. Very recently, it has also theory calculations for the phase diagram as a functiod. of

been employed to study critical end point behavior in alhe Monte Carlo simulation results for the liquid-vapor

Lennard-Jones binary fluid modg25] [cf. Fig. 1a)]. In this phase behavior are presgnted in Sec. I\(. Finally, in Sec_:. \%
study, the intersection with the line was shown to engender W€ conclude by comparing the simulation and mean-field
a singularity in the first-order phase boundary, in accord witH€Sults and discussing prospects for future work.

earlier theoretical prediction®6]. For the LV phase enve-

lope, this singularity is manifest as a bulge in the liquid lll. MEAN-FIELD CALCULATIONS

branch densityas indicated schematically in Fig(&l]. , ) )
Thus, while fragments of the picture of LV behavior in In this section we present two complementary mean-field

symmetrical fluids have been set in place by simulationStudies of symmetrical binary mixtures. The first is an ex-
much clearly remains to be done before a reliable and conRlicit investigation of the square-well binary mixture model,

prehensive overview emerges. In particular, no evidence hadSO studied by simulation in Sec. IV. The second is a gen-

yet been reported for the existence of the triple-point behay€ra! Landau theory treatment aimed at obtaining physical

ior shown schematically in Fig.(). There has also been no INSight into the origin of the various phase diagram topolo-
systematic simulation study of the full range of LV phase9'€S:

behavior for asinglemodel. Consequently, little reliable in-

formation exists concerning the manner in which one type of A. Explicit model calculations

phase diagram evolves into another. . Let us consider a binary fluid in which the two particle

. In _the present work we have attempt_ed to _remedy thI%peciesA and B interact via the symmetrical square-well
situation by performing a systematic MC simulation study Ofpotential of Eqs(2.1) and(2.2). For analysis purposes it will

tr;e dl__\/dphhase bgr:awor tgfla b|rt1ar)t/_ ﬂluu? tr:]uxture. The rTl?ofdeI rove useful to decompose this potential into a hard-sphere
studied has an interparticie potential ot the square-well for omponent plus a short-range attractive part. To this end we

rewrite Eq.(2.1) as

U(r)==, r<oc U(r)=Uyzs(r)+J(r), (3.1a

Uiry=—-J, o=<r<lbo (2.1 where
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w for r<o 5 fre(p)= i —1| t[ oM )]
- _ = lim == In trexp( —
Uns(D=14  otherwise (315 MR L BY P= AP
+ -2
and = —p— i _Pm
_fHS(p) P 2 +mn’|]n 2
- [—J for o<r<15¢ (3.10
J(r)= . 3.1
0 otherwise. — I%In 2 cosm,BJ_m)}. (3.9

For a binary fluid, the interaction between two particles
depends on their respective species. To deal with this welere fi 5(p) is the free energy of a reference system com-
introduce a two-state species variakjetaking the values; prising a hard-sphere single-component fluid. The third term
=1 (—1) when theith particle is of typeA (B). The total  on the right-hand side of E¢3.8) is minimized for
configurational energy can then be written

m=tanH 8J” m]. (3.9
ON({r,sh =2 Uns(rip)+ 2 I(r))(1+s;s))/2 _ . .
i<] i< As f(p) is not always a convex function of the density, we
take the convex envelope in order to find the coexistence
+> 8I(rip(1—sis)/2. (3.2  densities for the first-order LV transition.
i< We also wish to obtain the phase diagram in jla€lr

plane. To achieve this one needs to consider the grand po-

To obtain the liquid-vapor phase envelope andXh@ée, tentialf(p)+ up, with u the chemical potential. Minimizing

we adopt an approach similar to that employed in 8-  this yields the pressure
29,21,17,30 In the thermodynamic limit, théHelmholtz
free energy density(p,T) as a function of the number den- p(p, ) =min[—f(p") + up']. (3.10

sity p=N/V and temperaturd& is given by N

f(p,T)= lim _—1In trfexp(— BPN)]. (3.3  The coexistence chemical potential is then found by demand-
VBV ing equality of both the chemical potential and the pressure
in the coexisting phases.
Now, within the mean-field approximation, one assumes an The resulting phase diagrams in thel plane are shown
interaction between aA-type particle and an effective field in Figs. 2a)—-2(d), with the u-T phase diagrams shown as
insets. For large values af<1 we find a LV coexistence
region and a\ line at high densities that intersects the LV
ha=J"+(J7/N) X, 5=J"+J"m (34  line at a critical end point. The CEP induces an anomaly or
=t kink in the liquid branch density, which is clearly visible in
Fig. 2(@. This anomaly is the mean-field remnant of the

and an interaction betweerBatype particle and an effective specific heatlike singularity studied theoretically and compu-

field tationally in Refs.[26,25. Because the mean-field specific
heat exhibits a jump rather than a divergence at criticality,
hB:J+_(J_lN)E s=J"—J"m. (3.5 the anomaly takes the form of an abrupt change in the gra-
i>1 dient of the liquid branchdp, /dT. If fluctuations are taken
into account, howevedp, /dT diverges at the CER25].
Here J* are effective potentials anth=(Na—Ng)/(Np As 6 is reduced, the CEP anomaly grows until at around
+Ng). Since the coordination number in the fluid is density §=0.7 a small peak emergésf. Fig. 2b)]. The point at
dependent, we make the approximation which this occurs constitutes tacritical end point as dis-
cussed in Sec. lll B. On further reduction éf the peak
. o I = IM8(r) develops until the situation shown in Fig(cR is attained.
J*Z—Pf rfg(r), (3.6) Here the first-order coexistence envelope displays a triple

point at which a vapor coexists with a mixed liquid at inter-
mediate density and a demixed liquid of higher density.
Above the triple-point temperature, a vapor and a demixed
liquid coexist at low and moderate densities, merging at the
liquid-vapor critical point. At higher densities a mixed liquid

where the fluid correlation functiog(r) is taken from the
Percus-Yevick solution for hard spherel].
The mean-field configurational energy is then

LN and the two symmetrical demixed liquids coexist, becoming
oN sh=U N ha(1+S)+ha(1—s)], identical at a tricritical point.
me({r:$)=Uns(ry) 42’1[ Allts)+he(1-s)] If & is reduced further still, one reaches a poifdr &

(3.7 <0.605) at which the triple-point temperature equals the LV
critical-point temperature. Thereafter, the liquid-vapor criti-
from which the free energy at constantfollows as cal point is lost and only a tricritical point remains, as shown
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FIG. 2. Mean-field phase diagrams in th€l plane for various, as described in the texa) §=0.72,(b) §=0.70,(c) §=0.65, andd)
6=0.57. The insets show the corresponding phase diagrams ja-thelane. Full lines represent first-order phase coexistence and dashed
curves represent the line. The demixed fluidDF), mixed fluid (MF), and vapor ¥) phases are also marked.

for the cases=0.57 in Fig. Zd). No further topological parameter problem, i.e., the density: N/V and the number

changes in the phase diagram are observetlisaseduced to difference order parametenr=(N,—Ng)/N. In a symmetri-

zero. cal fluid, the Hamiltonian has to be invariant under sign re-
Although the liquid-vapor critical point disappears from versal ofm. The Landau expansion of the grand potential

the equilibrium phase diagram fé<<0.605, it is interesting thus takes the general form

to note that it nevertheless remainsnretastableform for

some range ob. This is illustrated in Fig. @), which shows F:a(P_Po)Z n (p—po)* ~u(p— )+A—2+ 14
the phase diagram faf=0.57 together with the three spin- 2 4 KLP™Po 2 4
odals delineating the limits of metastability of the demixed
fluid, mixed fluid, and vapofmarkedS;, S,, andS;). Also _ Emz( _ 31

, o ) ° : pP—Po)s (3.1
shown is the “hidden binodal” for coexistence between a 2

vapor and a demixed liquid, calculated by neglecting the ) ) . i
coupling of the concentration to the density. Clearly, for thisWherex is the chemical potential ang}, is a reference den-
value of 8, the hidden binodal and the liquid-vapor critical S in the liquid-vapor coexistence feglon, chosen such that
point (at which it terminatesboth lie within the metastable e cubic term proportional tp(- po)” vanishes. An expan-
region. For smallef=<0.45, however, the metastable critical SIoN Of this type has been discussed in a different context by
point moves outside the limit of metastability and the hiddenfR0Ux et al. [6]; it applies generally to fluids with an addi-
binodal is lost[see, e.g., Fig. ®)]. Although the phases tonal Ising-like ordering tendency. In the case of
corresponding to the hidden binodal are not observable dt€iSe€nberg-type ordering, e.g., in a ferromagnetic fluid, the
equilibrium, theyare expected to influence the dynamical Landau expansion looks very similar with simply replaced
properties of the system. We return to this point in moreby the vectorm and many of the conclusions drawn below
detail in Sec. Il B. still hold. The liquid-vapor critical point of the mixed fluid is
found ata=1 and could the fluid be kept at fixed density;
it would demix or order ah=0.
Phase diagrams of such fluids are often discussed in terms
We now turn to analyze the system from a more generabf an “interaction ratio” R, comparing the strength of the
point of view. Clearly, we are dealing with a two-order- ordering or demixing tendency in the fluid with the overall

B. General Landau theory considerations
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b4 | SR SO AN YN (1- )2
(@ > T2 "2 2 @+« e)ms,
13 ¢ 3.12
1.2 | Metastable wherep=ul(\—a)3, 0=(p—po)/\—a, m=m/\—a, and
critical point . . . . 2 o
= Hidden F is written in units ofa®. The parametek=B/2\/—a then

1.1 t binodal describes the effective coupling between the order parameter
and the density. The parameter A/(—a) — 2« is tempera-

1.0 turelike: Goc(T—Tcgp), \/_v_hereTCE_P _is the_tempe_rature of
the (stable or unstabjecritical demixing point at fixed den-
sity o=1. The phase behavior is found by minimizikg

0.9 AR with respect tam andg.

0.0 0.1 02 03 04 05 0.6 0.7 At k=0, the ordering behavior and the liquid-vapor phase
P separation decouple and do not affect one another. One finds
15 coexistence of a liquidg=1) and a vapor¢=—1) atu
: =0 and these phase boundaries are crossed by the critical
14 + ordering () line at#=0. If a small couplingx is turned on,
’ the ordering temperature increases with the density
13 ¢
0(0)=2x(e—1). (3.13
= 1.2 ¢
Thus the\ line shifts at the LV coexistence line. Techni-

1.1 cally, the Landau expansiaf3.12) predicts two critical end
points, one on the liquid side #=0 and one on the vapor

1.0 ¢ side atd=—4«. In all fluids studied so far, only the upper

\s, ! one has been seen. Situations with two CEPs are, however,

0.9 ' T * T encountered when a critical line intersects a liquid-solid co-

00 0.1 0.2 03 04 0.5 0.6 0.7 existence regiofi7,12).

P Next we study the stability of the demixed liquid phase.
The order parameter in the homogeneous demixed liquid

FIG. 3. (a) Liquid-vapor phase envelope in theT plane for  takes the valuen®=6.(e) - 6. The determinant of the sta-
5=0.57. Also shown are the spinoddg, S,, andS; and the “hid-  bility matrix there is given by [ (302—1)/2— «?]. Hence
den” binodal as described in Secs. Il A and Ill By Phase enve- the demixed phase becomes unstabledetp., with the
lope and spinodals fof=0.45, by which point the metastable LV spinodal line
critical point has been lost.

attractive interactions between particlgg9,10. R corre- 0= V(2k*+1)/3. (3.19
sponds to ¥ 6 in our model, toJ/K in the Blume-Emery-
Griffiths model[35], to the dipole momentn in reduced A tricritical point is found when the spinodal line intersects
units in[12], and to 172 in Ref.[11]. It is generally found the critical line(3.13. This require.>1, i.e., the coupling
that increasingR drives the phase behavior from the topol- « has to be larger than a limiting valug=1. The tricritical
ogy depicted in Fig. () via Fig. 1(b) towards Fig. Ic), i.e.,  point is then located at
a critical end point turns into a tricritical point, which moves
up in temperature, until the liquid-vapor critical point disap- 6,=0.(0.), ©1=0¢ (3.15
pears in the region of coexistence between demixed and
mixed liquid phases. or

Although the interaction ratio appears to be an influential
guantity, it is important to note that the basic factor driving o 522
the phase behavior is theoupling between the two order == / K (k2—1). (3.16
parameters. In Eq3.1J) it is described by the last term. At 3 3
B=0, no tricritical point can be expected, regardless of the
interaction ratio. Therefore, in what follows we shall analyze We conclude that the coupling between the order pa-
the phase behavior in terms of the coupling strength ratherameter and the density determines the topology of the phase
than the interaction ratio. The relation between the two willdiagram. If x exceedsk,, the topology switches from one
be discussed later. with a critical end poin{Fig. 1(a)] to one with a tricritical

We will focus on the transition from a topology with a point[Fig. 1(b)]. From a physical point of viewx basically
critical end point to one with a tricritical point and assumereflects the correlations between order parameter and density.
that we are well below the liquid-vapor critical temperature For example, the response of the average order parameter to
a<0. It is then convenient to rescale the Landau expansioa change of chemical potential in the demixed liquid phase is
(3.173) such that given by
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om . - (6.—0)"*¢ e==+1 (6>0),

—=o{me)=(m)(@)ok——o— (3.17)

e ¢ o-=—1-3(|6l/3*> (6<0) (322
where the exponent is given by {=1/2 in mean-field 0.=1+(6/3)¥2 (6<0).

theory.[Scaling arguments yield= (y+ «)/2, wherey and
a are the usual Ising critical exponents of the order paramNote that these results agree with the arguments presented in
eter susceptibility and the specific heat. [25] if one insertsa;= 1/2, the mean-field value of the expo-

It is instructive to investigate the relationship between nenta at the tricritical point. Mean-field theory is expected
and the interaction rati®®. WhenR increases, the critical to yield the correct tricritical behavior in our system since
end point temperaturégp moves closer to the liquid-vapor the upper critical dimension of a tricritical point d,=3.
critical temperaturel ;. Assumingac T ,—T, this implies We close this subsection with a discussion of hidden parts
that the effective couplingc1/(T;o—T) increases also of the phase diagram. To this end, we return to Eg11)
and diverges a$.gp approached .. As long as there isany and perform a general stability analysis. We consider the
coupling between the density and the order paranfét;  demixed phase am=[A—B(p—po)]*? and the mixed
B>0 in Eq. (3.11], tuning R has the effect of tuning the phase am=0.
coupling. Thus our arguments are supported by our own ex- The conditions for stability of the demixed phase have
plicit model calculations and by the results quoted earlieralready been discussed earlier. One finds a spinodal at
[7,9-12,35.

Next we discuss the implications for the LV phase bound- p—po==*S; with Sf=\(B*-2a)/6, (3.23
ary. The small coupling limit«<xy has been studied in o ) . .
detail in Ref.[25]. In chemical potential space, the critical Which is equivalent to Eq(3.14) in nonrescaled units. For
end point induces a weak singularity in the first-order liquid-|»— pol <SI , the demixed phase becomes unstable with re-

vapor line[26] spect to phase separation into a demixed liquid and a vapor.
In the present context, the stability of the mixed liquid
M(T):/—Lreg(T)—U|t|2w, (3.18 phase is more interesting. The stability analysis yields two
spinodals: At
whereu,¢4(T) is an analytical function of the temperature
t=(T—Tcep)/Tcep, andU is a critical amplitude. In the lp—pol<=S5, S3=v-al3, (3.24
Landau theory frameworku,.q is simply given by ueq

the demixed liquid phase is unstable with respect to phase

:MregEO- . . . Lo .
The density of the vapor phase at coexistence behaves Isneparatlon into & demixed liquid and its vapor and at
a similar way p—po>SE=A/B, (3.29

po(T)=Pgreg(T) = Vglt]*"¢, (319 it becomes unstable with respect to demixing. As long\as
0 and the couplind is sufficiently small, there exists a
gion on the high-density side of the flujg> po, where the
mixed liquid phase can be metastable or even stable

>
whereas the density of the liquid phase shows the markepe
hump indicated in Fig. (), given by[25]

pI(T)=pireg(T) = Vit]* 7. (320 J—al3<p—po<AIB.

In the strong coupling limitx> «q, one deals with the
simple case in which two first-order lines meet at a triple
point. One thus expects a kink i(T) and inpy(T) and the
density of p/(T) jumps to the coexisting demixed liquid
phasgcf. Fig. 2c)]. The two regimes meet at= x, where
the critical end point turns into a tricritical end poifEEP)
[36] [cf. Fig. 2b)]. Within our Landau theory, we have cal-
culated the phase boundaries in the vicinity of a tricritical
end point. Since we expect thatvaries with temperature,
we consider a pathk= «y+ K@, where 9« T—T1gp as de-
fined above. Our results to leading ordewiare summarized
as follows: For the chemical potential of the liquid-vapor
line, we find

In that case, a binodal can be found @t po|= \/— a, which
may be stable or hidden in the metastable region.

The spinodals and the hidden binodal are indicated in Fig.
3. Note that both the coefficients and A depend roughly
linearly on the temperatur€. This explains the linear form
of S, in the density-temperature plane as opposed to the
Iparabolic form ofS;.

The hidden binodal disappears completely as sooA as
<0 ata=0, i.e., as soon as the spinod&l meetsS, at the
“hidden critical point” or beyond(at p<pg). This criterion
is independent of the coupling. The strength of coupling
thus has no influence on the appearance of a hidden binodal.
It does, however, affect the range of metastability of the
hidden binodal, i.e., the temperature interval before it is lost

u=0(6>0), by intersecting the spinod&,.
A Of course, the concepts of spinodals and metastability
w=—(6]/3)%%(6<0). (3.2)  only really make sense within a mean-field treatment and

strictly speaking lose their physical meaning as soon as fluc-
The rescaled densities of the vapor phésgectator phase, tuations are taken into account. However, a discussion of the
¢_) and the liquid phased, ) are given by metastable and unstable regions is still useful in the context
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of the dynamical properties of the system. Consider, for inthe |=8 and 5<10’ MCS for the =10 system size. At
stance, a binary fluid with interactions corresponding to thecoexistence, the average acceptance rate for particle transfers
situation shown in Fig. @&, at densityp=p,, which is  was approximately 10%, while for spin-flip attempts the ac-
guenched from some high temperature into the coexistenageptance rate was approximately 40%.
region slightly below the “metastable critical point.” One In this work we wish to explore the parameter space
can then expect “two-stage demixing.” In the first stage, thespanned by the three variables, T, ). To accomplish this,
fluid will separate into domains of vapor and mixed liquid without having to perform a very large number of simula-
and the separation of these domains will be accelerated byons, we employed the histogram reweighting technique
the driving force of gravitation. In the second stage, the lig{39]. Use of this technique permits histograms obtained at
uid phase will slowly demix and droplets of demixed liquid one set of model parameters to be reweighted to yield esti-
will additionally nucleate from the vapor phase. If the inter- mates appropriate to another set of model parameters. To
actions of the fluid correspond to the situation depicted inenable simultaneous reweighting in all three fiejdsT, s,
Fig. 3(b), on the other hand, no intermediate stage will ap-one must sample the conjugate observabjesi,(i4), with
pear and the fluid will demix and phase separate simultap=N/V the number densityy=®/V the configurational en-
neously. ergy density, andiy that part ofu associated with interac-
tions betweerissimilar particle species. In addition to these

IV. MONTE CARLO STUDIES variables, we have also accumulated the quantity (N
—Ng)/V=pm, which gives a measure of the degreeteB
ordering in the system.

Many features of the simulation techniques employed in  As mentioned in the Introduction, standard grand canoni-
the present study have previously been detailed elsewhegg) simulations, deep within the LV coexistence region, are
[37,24,17. Accordingly, we confine the description of our hampered by the large free energy barrier separating the two
methodology to its barest essentials, except where necessaiyexisting phases. This barrier leads to metastability effects
to detail a new aspect. and prohibitively long correlation times. To circumvent this

We assume our system to be contained in voluh@nd gifficulty, we have employed the multicanonical preweight-
to be thermodynamically open so that the total number denng method[22], which encourages the simulation to sample
sity and concentration can fluctuate. The associégeand  the interfacial configurations of intrinsically low probability.
canonical partition function is This is achieved by incorporating a suitably chosen weight

o N function in the MC update probabilities. The weights are
_ = | o= BLOr,8h) + uN] subsequently “folded out” from the sampled distribution to
2 N§=:O {25:’} i];[l [j drl]e - @D yield the correct Boltzmann distributed quantities. Use of
this method permits the direct measurement of the distribu-
Here the species labsl=1,—1 denotes, respectively, the tion of observables at first-order phase transitions, even when
two particle specie®\ andB, N=N,+ Ng is the total par- these distributions span many decades of probability. Details
ticle number,8=1/kgT is the inverse temperature, apdis  concerning the implementation of the technigues can be
the chemical potential. The configurational energy denBity found in Refs[22,17.
is given by

A. Simulation details

B. Method and Results

<D({r,s})=iEJ U(rij . sis;), (42 Using the multicanonical simulation scheme, we have ob-
tained the density distributiop(p) for a number of states
where the symmetrical square-well interparticle poteritial close to the LV coexistence curve and for a number of
is defined in Eqs(2.1) and (2.2). choices ofé. We begin by probing the regime of critical end
Grand canonical MC simulations were performed using goint behavior.
standard Metropolis algorithni38,24. The MC scheme On the basis of the mean-field results of Sec. Ill, CEP
comprises two types of operatior(g): particle insertions and behavior is expected to occur for large<l. For §<1, the
deletions andii) particle identity transformation&—B and  CEP will occur at very low temperatures relative to the LV
B—A. Since particle positions are sampled implicitly via the critical point(i.e., T<T.g), but will move to higher tempera-
random particle transfer step, no additional translation algotures asé is reduced. At some point a8 is reduced, the
rithm is required. phase diagram is predicted to evolve into a triple-point to-
To simplify identification of particle interactions, we em- pology. Thus, in seeking to observe CEP behavior one
ployed a linked list schem[8]. This involves partitioning should aim to se$ large and to search at low temperatures.
the periodic simulation space of voluné into I3 cubic  Unfortunately, very low temperatures are associated with
cells, each of linear dimension equal to the interaction rangehigh liquid densities at LV coexistence and these are inac-
i.e., L/I=1.5. We chose to study two system sizes correcessible to our GCE scheme due to the prohibitively small
sponding tol =8 andl =10, containing, at LV coexistence, particle transfer acceptance rate. In fact, we find that the
approximate average particle numbegh$) =550 and 1100, largest value ofé for which the density fell within the ac-
respectively. Equilibration periods of up tox2l0° Monte  cessible rangeg=0.7) wasé=0.72. Although this value of
Carlo stepgMCS) were employed and sampling frequenciesé is not as large as one might hope to attain, it nevertheless
were 100 MCS for thd =8 system to 150 MCS for the  transpires that CEP behavior occurs. This is demonstrated in
=10 system. Production runs amounted t& 0’ MCS for  Fig. 4, which shows the liquid and vapor coexistence densi-
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FIG. 4. Liquid-vapor coexistence curve in tpeT plane ford
=0.72, showing the vapor\{), mixed fluid (MF), and demixed
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FIG. 5. Measured near-coexistence density distribupigs) for
T=1.044 ands=0.675 showing the three-peak structure discussed

fluid (DF) phases. The results were obtained from the measureH] the text. The distribution is normalized to the unit integrated

peak positions of the coexistence density distributions for Ithe
=8 system size. Statistical errors do not exceed the symbol sizes.

weight and statistical errors are comparable to the symbol sizes.

density distributions fors=0.665, for which a triple point
ties for this value ofs obtained as the first moment of the occurs at some temperatuT$P<Tco' i.e., below the ||qu|d-

respective peaks gi(p) for thel =8 system siz¢25]. The
data were obtained by reweightif@®9] four histograms
spanning temperatures in the rarige 0.99- 1.05 and coex-
istence was located using the equal peak-weight criterion for
p(p) [40,24. Also shown in the figure is the measured locus
of the critical line.

Clearly the data of Fig. 4 display an anomaly in the liquid
branch density close to the intersection point of thdine
and the liquid branchi.e., at the CEP In the thermody-
namic limit, the liquid branch density is expected to exhibit a
cusplike singularity at the CEP, as given in E8.20. In our
finite-size system, however, this critical singularity is
smeared out and shifted, so that only a rounded depression in
the coexistence envelope is visih@5]. Since these aspects
of the CEP singularities have recently been discussed in de-
tail elsewherg25], we shall not pursue them further here.
Instead we shall proceed to consider what happens ias
made smaller still.

Further reducing continues to shift the CEP closer to the
LV critical point. As one reache$=0.675, however, the
phase diagram changes topology. We find that above a cer-
tain temperature the liquid peak im(p) decomposes into
two peaks. This is shown in Fig. 5 for the- 10 system size
at a temperaturd@ =1.044. Evident from this figure are two
closely separated overlapping peaks, the presence of which
signifies incipient triple-point behavior. It follows that for
this § andT, the system lies close to the tricritical end point
that heralds entry into the triple-point phase diagram topol-
ogy [cf. Fig. 2b)]. Actually, we believe that the TEP lies
close to §=0.68 since this is the value at which we first
observe the appearance of a shoulder in the liquid peak. In a
sufficiently large system, this shoulder would presumably re-
solve itself into a distinct peak. We have not, however, at-
tempted to pinpoint the location of the TEP more precisely,

vapor critical temperature. The corresponding formp(@h)
are shown in Fig. @). At the triple point, a demixed liquid
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as this would require a full finite-size scaling analysis, atask FIG. 6. (a) Coexistence density distributionp(p) for &

beyond the scope of the present study.

=0.665 at a selection of temperatures spanning the triple-point tem-

Using histogram reweighting, we have monitored the tem-perature.(b) The corresponding form op(m) where m=mp
perature dependence pfp) asd is reduced below the value =(N,—Ng)/V. Lines are guides to the eye. Statistical errors are
at which the TEP occurs. Figurga@ shows a selection of comparable to the symbol sizes.
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coexists with a mixed liquid and its vapor. Far>Tqp, 12.0
there is phase coexistence either between the mixed liquid @ oo T=1.051

100 = T=1.055 ®

and its vapor or between the mixed and demixed lidefd
Fig. 2(c)]. The liquid-vapor coexistence terminates at the LV
critical point, while the mixed-demixed liquid coexistence
curve terminates at a tricritical point. From Figapone sees
that for §=0.665, the tricritical point temperature lies
slightly below the LV critical point temperature, as evi-
denced by the fact that on increasifigthe liquid peaks
merge before the liquid and vapor peaks do so.

The coexistence density distributions f@=0.66 are
shown in Fig. Ta) for temperatures spanning the triple-point
temperature. For thig, the tricritical point is sufficiently

P(P)

8.0

6.0

40 1

20 1

0.0

&--2 T=1,0565

well separated from the LV line that it is possible to distin- p

guish the liquid-vapor and liquid-liquid branches by appro-

priately tuning the chemical potential. This is demonstrated 6.0

in Fig. 7(b), which showsp(p) for the two coexistence ® 28765 .
curves aflf =1.058. The different degree of order in the two 30 ¢ oee u=—2.8734 o

liquid phases is clearly seen in the distributjpfm), shown
in Fig. 7(c). One notices, however, that both the density dis-
tributions show signs of the third phase. This reflects the
closeness of the two coexistence curves at éhand T, as
evidenced by the very small chemical potential difference.
Under such conditions, finite-size smearing effects render it
difficult to completely isolate two of the three phases.
Finally in this section, we consider the phase behavior for
6=0.65. Coexistence forms @f(p) at selection of tempera-
tures are shown in Fig. 8. One observes that on increasing
temperature, the low-density vapor peak moves smoothly
over to merge with the high-density peak of the ordered lig-

p(p)

uid. At no point is a three-peaked structure visible. This sce- 7.0
nario is consistent with the phase behavior shown schemati- oo P=m2.8765
cally in Fig. Zd), in which the vapor and the demixed liquid 60 © s =2 8734
phases merge at a tricritical point. 50
V. DISCUSSION AND CONCLUSIONS a0} L.
. . g
In summary, we have used multicanonical Monte Carlo B30 ¢
simulations and histogram reweighting techniques to study ) &
how the liquid-vapor phase behavior of a symmetrical binary 20 | % %
mixture depends o, the ratio of interaction strengths for &g
dissimilar and similar particle species. Fé= 1, the phase 1.0 + f
diagram exhibits a critical end point at temperatures well Huﬂnnameamwgggﬁg’ ggggowmmwmﬂg
. . . . . . 00G000000gee?®” ", | 00000600000p0000500 R,
below the liquid-vapor critical point. Decreasidgshifts the 0.0
" . L " - -0.5 =03 -0.1 0.1 0.3 0.5
critical end point closer to the liquid-vapor critical point. For n

6~0.68, however, the critical end point becomes locally un-

stable and a triple point occurs in which vapor, a mixed FIG. 7. (a) Selected coexistence density distributions fbr
liquid, and a demixed liquid all coexist. For temperatures=0.66, spanning the triple pointb) Density distribution forT
above the triple point there is coexistence either between & 1.058 for two different values of the chemical potentia). The
high-density demixed fluid and a moderate-density mixectorresponding forms gb(m), wherem=mp=(N,—Ng)/V. Lines

fluid or between a mixed fluid and its vapor. Decreaséhg are merely guides to the eye and statistical errors are comparable to

still further pushes the triple point to higher temperature,the symbol sizes.

until for §<0.65 it eventually equals that of the isotropic

liquid-vapor critical point. Thereafter, the mixed liquid phase existence of the triple-point regime, and the crossover to a
is preempted by the demixed liquid phase and the liquidpurely tricritical regime. Additionally, our Landau theory
vapor coexistence curve terminates in a tricritical point.  study of Sec. Il B provides useful physical insight into the
Thus our simulation results confirm the qualitative picturemanner in which the coupling of density and concentrations
of phase diagram topology emerging from mean-field theoryeads to the observed phase behavior.
as set out in Secs. Il and Ill. These theories seem quite suc- In quantitative terms, however, the mean-field theories are
cessful in capturing key features of the behavior such as thkess reliable. Owing to the neglect of correlations, they pre-
existence of a coexistence curve anomaly at the CEP, thdict neither the correct exponents for the coexistence curve
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14.0 - - - - . havior as a function ob, we might easily have missed this
regime altogether. Thus it seems that more sophisticated lig-
1201 e uid state theories are called for before the goal of accurately
T 3 — -1 predicting the phase behavior of simple binary fluid models
------- | X is attained. Presumably, any successful theory must be ca-
~ 80+ pable of dealing with both the critical and noncritical re-
a . .
= & gimes of the phase diagram. In fact, one such theory, the
601 % hierarchical reference theori2], has recently been pro-
40 - 0 posed. It would be interesting to see whether or not it accu-
L rately reproduces the phase behavior of the present model.
20 A}-w =, With regard to further work on this model, one particu-
A_.,w" o larly interesting project would be to investigate the predicted
0-00.10 t;o 030 040 existence of the hidden binodal and associated metastable

P critical point. The occurrence of metastable critical points
was discussed by CaHi33] and later found in lattice gas
FIG. 8. Selected near-coexistence density distributionséfor models by Hall and Ste[l3]. More recently it has been sug-
=0.65 at a number of subtricritical temperatures. Statistical errorgiested that they occur in colloidal fluids close to the freezing
are comparable to the symbol sizes. line [34], in dipolar fluids[12], and in models for watd#1].
Since the present model offers a computationally tractable
singularities at the CEP nor the shape of the near-critical L\system, it might usefully be employed as a test bed for study-
coexistence curve. The values they yield for quantities sucing the generic features of the metastable critical point. This
as the LV critical temperature are also at variance with simueould feasibly be achieved by quenching the system from
lation estimates: e.g., fo56=0.72 mean-field calculations high temperature into the unstable regime just below the
predict that the LV critical temperature |}=1.172, while  metastable critical point. As described in Sec. Il B, this
simulation givesTﬁi)m:l.OG(l). In view of this, the appar- should result in a two-stage demixing process in which the
ently better agreement between the mean-field and simuldnetastable mixed liquid phase appears for a transitory period
tion estimates of the CEP fat=0.72, i.e. Tof,=1.002 and before eventually demixing at later times. _
sim _1.0X1), are presumable fortuitous. For three- Additional interesting work would be to look at the equi-
dimensional tricritical behavior, mean-field theory is at Ieast]'b”um phase behavior of the symmetrical mixture as a func-

expected to yield the correct tricritical exponents since théion of _5<O' Landau theor3[6_] p_r_edicts t.hat ag is made_
upper critical dimension for such behaviords 3 [15]. Al- increasingly negative, the tricritical point transforms first

though we have not attempted to probe the universal aspe into a double critical end point before a critical end point

of the tricritical behavior, our results show that estimates fo£Me"ges on theaporside of the LV coexistence envelope. It

the tricritical temperature are not reproduced by the simulalvould certainly be worthwhile to assess whether or not this

tions, at least close to the triple-point regime. However, thig'cenario Is correct.
may par.tly be th'e result of crossover eﬁect§ qs_sociat_ed with ACKNOWLEDGMENTS
the relative proximity of the LV critical and tricritical points.
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